Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(44): 17011-17021, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37874964

RESUMO

Biomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms. We find that when heated to 40-45 °C in an airborne thermal denuder, 19% of lofted smoke PM1 evaporates. Thermal denuder measurements are consistent with evaporation observed when a single smoke plume was sampled across a range of temperatures as the plume descended from 4 to 2 km altitude. We also demonstrate that chemical aging of smoke and differences in PM emission factors can not fully explain the platform-dependent differences. When the measured PM volatility is applied to output from the High Resolution Rapid Refresh Smoke regional model, we predict a lower PM NEMR at the surface compared to the lofted smoke measured by aircraft. These results emphasize the significant role that gas-particle partitioning plays in determining the air quality impacts of wildfire smoke.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Fumaça/análise , Poluentes Atmosféricos/análise , Biomassa , Poluição do Ar/análise , Material Particulado/análise , Aerossóis/análise , Monitoramento Ambiental/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-33409323

RESUMO

The Korea - United States Air Quality Study (May - June 2016) deployed instrumented aircraft and ground-based measurements to elucidate causes of poor air quality related to high ozone and aerosol concentrations in South Korea. This work synthesizes data pertaining to aerosols (specifically, particulate matter with aerodynamic diameters <2.5 micrometers, PM2.5) and conditions leading to violations of South Korean air quality standards (24-hr mean PM2.5 < 35 µg m-3). PM2.5 variability from AirKorea monitors across South Korea is evaluated. Detailed data from the Seoul vicinity are used to interpret factors that contribute to elevated PM2.5. The interplay between meteorology and surface aerosols, contrasting synoptic-scale behavior vs. local influences, is presented. Transboundary transport from upwind sources, vertical mixing and containment of aerosols, and local production of secondary aerosols are discussed. Two meteorological periods are probed for drivers of elevated PM2.5. Clear, dry conditions, with limited transport (Stagnant period), promoted photochemical production of secondary organic aerosol from locally emitted precursors. Cloudy humid conditions fostered rapid heterogeneous secondary inorganic aerosol production from local and transported emissions (Transport/Haze period), likely driven by a positive feedback mechanism where water uptake by aerosols increased gas-to-particle partitioning that increased water uptake. Further, clouds reduced solar insolation, suppressing mixing, exacerbating PM2.5 accumulation in a shallow boundary layer. The combination of factors contributing to enhanced PM2.5 is challenging to model, complicating quantification of contributions to PM2.5 from local versus upwind precursors and production. We recommend co-locating additional continuous measurements at a few AirKorea sites across South Korea to help resolve this and other outstanding questions: carbon monoxide/carbon dioxide (transboundary transport tracer), boundary layer height (surface PM2.5 mixing depth), and aerosol composition with aerosol liquid water (meteorologically-dependent secondary production). These data would aid future research to refine emissions targets to further improve South Korean PM2.5 air quality.

3.
J Phys Chem A ; 123(41): 8776-8786, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31513404

RESUMO

Chemical activation experiments and computational methods have been used to study the unimolecular reactions of C2H5CH2Br and C2D5CHFBr with 90 and 93 kcal mol-1 of vibrational energy, respectively. The four-centered elimination reactions of HBr and DBr are the dominant reactions; however, 2,1-DF, 1,1-HBr, and 1,1-HF reactions are also observed from C2D5CHFBr. The main focus was to search for the role of the C2D5(F)C:HBr adduct in the 1,1-HBr elimination for comparison with carbene adducts in 1,1-HX(Y) elimination from RCHXY (X,Y = Cl and F) molecules. Models of transition states and molecules from electronic structure calculations were used in statistical calculations of the rate constants to assign threshold energies for each reaction based on the experimental rate constants. The threshold energy for 2,1-HBr elimination from 1-bromopropane is 50 kcal mol-1, which is in basic agreement with thermal activation experiments. Comparison of the 2,1-DBr and 2,1-HBr rate constants permits discussion of the kinetic isotope effects and the effect of F atom substitution on the threshold energy for 2,1-HBr elimination. Although CD3CD═CDF from 1,1-HBr elimination of C2D5CHFBr followed by D atom migration is an experimentally observed product, dissociation of the C2D5(F)C:HBr adduct may be the rate-limiting step rather than crossing the barrier associated with the transition state for 1,1-HBr elimination. The calculated dissociation energies of C2H5(X)C:HF adducts are 9.9, 9.3, and 9.0 kcal mol-1 for X = F, Cl, and Br, and the values for C2H5(F)C:HX are 9.9, 6.4, and ∼4.9 kcal mol-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...